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Abstract
I discuss in this paper the behaviour of the solutions of the so-called
q-hyperbolic potentials, i.e. Pöschl–Teller-like and conditionally solvable
potentials, in terms of the path integral formalism. The differences in
comparison to the usual Pöschl–Teller-like potentials are investigated, including
the discrete energy spectra and the bound-state wavefunctions. We also point
out the relation of the q-deformation with curvature on hyperboloids.

PACS numbers: 31.15.Kb, 03.65.Ge

1. Introduction

In this paper I want to discuss some specific generalizations of Pöschl–Teller related potentials.
They are based on a q-deformation of the usual hyperbolic potentials and are denoted by (we
assume without loss of generality q > 0)

sinhq x = 1
2 (ex − q e−x), coshq x = 1

2 (ex + q e−x). (1)

Consequently we define

tanhq x = sinhq x

coshq x
, cothq x = coshq x

sinhq x
. (2)

Note the relation cosh2
q x − sinh2

q x = q, which has the consequence that almost all relations
known from the usual hyperbolic functions must be modified. In analogy with the usual
hyperbolic functions we have on the one hand

d

dx
coshq x = sinhq x,

d

dx
sinhq x = coshq x. (3)

However, on the other hand, we obtain

d

dx
tanhq x = q

cosh2
q x

,
d

dx
cothq x = − q

sinh2
q x

. (4)
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These potentials belong to the class of shape-invariant potentials as derived from
supersymmetric quantum mechanics [22, 10], and were first introduced by Arai [1], and
further discussed by Lévai [27] and Lemieux and Bose [26] in the context of general solutions
of the hypergeometric equation. Recently, these potentials have also been discussed by Eǧrifes
et al [7]. The introduction of the parameter q may serve as an additional parameter in describing
inter-atomic interactions. The (modified) Pöschl–Teller and so-called conditionally solvable
potentials serve as models in molecular and solid-state physics, e.g. [20, 28, 29, 31–33, 35],
and are known for a long time. For instance, these potentials model in a simple way diatomic
molecules with a finite number of bound state solutions together with scattering states. They
are anharmonic, though can be treated analytically and are exactly solvable. Usually all these
potentials have two free parameters which can be adjusted to experimental observation. The
consideration of the q-deformed potentials allows the incorporation of an additional parameter
q. However, as it will turn out, this parameter q often only scales the potential in a simple
way, but can be further interpreted as curvature (cf section 3).

We can therefore investigate whether it is possible to introduce the additional parameter
q to modify a sample of known potentials which are related to the (modified) Pöschl–Teller
potential in order to change the energy-level feature of the potentials. The aim of this paper is
to investigate this specific class of shape-invariant potentials, where the path integral method
is used as a tool to derive the corresponding Green’s function. This is of particular importance
in boundary value problems with e.g. Dirichlet boundary conditions (potential V8).

In the following we present the solution of various potentials. For the first potential we
sketch the path integral calculation. The path integral method is of particular convenience:
first, because the solutions for the discussed potentials can be stated from the known solutions
in the literature, cf [19]; second, the solutions in terms of the Green functions give immediately
the energy spectrum and the bound-state wavefunctions; third, also the scattering states are
given; however, they will not be stated. For the remaining potentials the explicit path integral
evaluation is omitted. We just state the Green function, the bound-state wavefunctions and the
energy spectrum. In section 3 we discuss our results; in particular, we point out the observation
that the deformation parameter q can be interpreted as curvature on a hyperboloid.

2. Path integral solutions

2.1. The potential V1

The simplest system of such a deformed potential with bound-state solutions based on the
q-deformed hyperbolic functions has the form (x ∈ R)

V1(x) = − h̄2

2m

λ2 − 1/4

cosh2
q x

= − h̄2

2m

λ2 − 1/4
1
2 (ex + q e−x)2 . (5)

Extracting a factor
√

q we obtain

V1(x) = − h̄2

2mq

λ2 − 1/4
1
2 (e− ln

√
q+x + eln

√
q−x)2

. (6)

If we define y = x − ln
√

q ∈ R, we obtain

V1(y) = V1(x)|q=1

q
= − h̄2

2mq

λ2 − 1/4

cosh2 y
, (7)
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and the only effect is a scaling of the potential. The corresponding Lagrangian is changed in
the following way:

L = m

2
ẋ2 +

h̄2

2m

λ2 − 1/4

cosh2
q x

→ m

2
ẏ2 +

h̄2

2mq

λ2 − 1/4

cosh2 y
. (8)

According to [2, 19, 25] the path integral solution is given in terms of the corresponding
Green function G of the Feynman kernel. The path integral solution of the potential V1 is
simple, because we can directly apply the path integral solution for the symmetric modified
Pöschl–Teller potential [25]. Explicitly we have

∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

[
i

h̄

∫ t ′′

t ′

(
m

2
ẋ2 +

h̄2

2m

λ2 − 1
4

cosh2
q x

)
dt

]
=
∫

R

dE

2π i
G(V1)(x ′′, x ′;E), (9)

G(V1)(x ′′, x ′;E) = m

h̄2 �

(
1

h̄

√−2mE − λ̃ +
1

2

)
�

(
1

h̄

√−2mE + λ̃ +
1

2

)

× P
−√−2mE/h̄

λ̃−1/2
(tanh y<)P

−√−2mE/h̄

λ̃−1/2
(−tanh y>), (10)

where I have set λ̃2 = (λ2 − 1/4)/q + 1/4. The P µ
ν (z) are Legendre functions. The

bound-states are given by

�(V1)(x) =
(

n − λ̃ − 1
2

q

�(2λ̃ − n)

n!

)1/2

P
n−λ̃+ 1

2

λ̃−1/2
(tanhq x), (11)

and the energy spectrum is

E(V1)
n = − h̄2

2m


n −

√
λ2 − 1

4

q
+

1

4
+

1

2




2

, (12)

where n = 0, 1, . . . , Nmax <
[
λ̃ − 1

2

]
and [x] denotes the integer values of x ∈ R. We do

not state the continuous solutions, cf [19, 25]. We observe that the principal effect consists
in a change in the parameter λ → λ̃. For 0 < q < 1 we observe an increase of the number
of energy levels, whereas for q > 1 there is a decrease of the number of energy levels in
comparison to the original 1/ cosh2 x problem.

2.2. The potential V2

A more complicate version of this potential is the fully modified Pöschl–Teller potential, now
in the form of q-deformed hyperbolic functions, i.e. (x > ln

√
q)

V2(x) = h̄2

2m

(
λ2 − 1/4

sinh2
q x

− ν2 − 1/4

cosh2
q x

)

= h̄2

2m

(
λ2 − 1/4

1
4 (ex − q e−x)2 − ν2 − 1/4

1
4 (ex + q e−x)2

)
. (13)

Performing the transformation y = x − ln
√

q > 0 yields

V2(y) = V2(x)|q=1

q
= h̄2

2mq

(
λ2 − 1/4

sinh2 y
− ν2 − 1/4

cosh2 y

)
, (14)
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and the only effect is a scaling of the potential. We express the solution in terms of a path
integral, and again the Green function can be stated in a closed form as known from the
literature:

G(V2)(x ′′, x ′;E) = m

h̄2

�(m1 − Lν)�(Lν + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

× (q coshq x ′ coshq x ′′)−(m1−m2)(tanhq x ′ tanhq x ′′)m1+m2+1/2

× 2F1
(−Lν + m1, Lν + m1 + 1;m1 − m2 + 1; q cosh−2

q x<

)
× 2F1

(−Lν + m1, Lν + m1 + 1;m1 + m2 + 1; tanh2
q x>

)
. (15)

I have set m1,2 = 1
2 (λ̃ ± √−2mE/h̄), Lν = 1

2 (ν̃ − 1), λ̃2 = (λ2 − 1/4)/q + 1/4,
ν̃2 = (ν2 −1/4)/q +1/4, and 2F1(a, b; c; z) is the hypergeometric function. The bound-states
are [13, 25]

�(η,ν)
n (x) = N(λ,ν)

n (q−1/2 sinhq r)λ+1/2(q−1/2 coshq x)n−ν+1/2
2F1
(−n, ν̃ − n; 1 + λ̃; tanh2

q x
)
,

(16)

N(λ,ν)
n = 1

�(1 + λ̃)

[
2(ν̃ − λ̃ − 2n − 1)�(n + 1 + λ̃)�(ν − n)

�(ν − λ̃ − n)n!

]1/2

, (17)

En = − h̄2

2m
(2n + λ̃ − ν̃ − 1)2, n = 0, 1, . . . , Nmax <

[
1

2
(ν̃ − λ̃ − 1)

]
. (18)

Note that the coordinate origin is excluded by x > ln
√

q. Again, we omit the continuous
states.

2.3. The potential V3

For another type of these kinds of potentials (Manning–Rosen potential) which is related to
the Coulomb potential in hyperbolic geometry, we define

V3(x) = −α cothq x +
h̄2

2m

λ2 − 1/4

sinh2
q x

= −α
ex + q e−x

ex − q e−x
+

h̄2

2mq

λ2 − 1/4

(e− ln
√

q+x − eln
√

q−x)2
. (19)

Performing the same transformation as before we get (x > ln
√

q)

V3(y) = −α coth y +
h̄2

2mq

λ2 − 1/4

sinh2 y
. (20)

and now the ‘radial’ potential strength is modified. We can expect a modification of the
spectral properties due to the additional parameter q. The Manning–Rosen potential with
deformed hyperbolic functions can be solved by considering a spacetime transformation in
the path integral [24]. We have (x > ln

√
q) for the Green function

G(V3)(x ′′, x ′;E) = m

h̄2

�(m1 − LE)�(LE + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

×
(

2

cothq x ′ + 1
· 2

cothq x ′′ + 1

)(m1+m2+1)/2

×
(

cothq x ′ − 1

cothq x ′ + 1
· cothq x ′′ − 1

cothq x ′′ + 1

)(m1−m2)/2
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× 2F1

(
−LE + m1, LE + m1 + 1;m1 − m2 + 1; cothq x> − 1

cothq x> + 1

)

× 2F1

(
−LE + m1, LE + m1 + 1;m1 + m2 + 1; 2

cothq x< + 1

)
, (21)

where LE = − 1
2 +

√
2m(α − E)/2 and m1,2 = 1

2

(
2λ̃ ± 1

h

√−2m(α + E)
)
, and λ̃ is defined as

in V1. The relevant coordinate and time transformations to obtain a path integral formulation
in terms of the modified Pöschl–teller potential have the form [11, 25]

1

2
(1 − coth y) = − 1

sinh2 r
, dt = tanh2 r ds. (22)

The wavefunctions and the energy spectrum of the bound states read (0, 1, . . . � Nmax <

[
√

mα/2/h̄ − 1
2 (s + 1)], s = 2λ̃, m2 = (1 + s)/2,m1 = (1 + (s + 2n + 1)/2 + 2mα/h̄2(s +

2n + 1))/2, note n + 1
2 − m1 < 0):

�n(x) =
[(

1 +
4m|α|

h̄(s + 2n + 1)2

)
(2m1 − 2n − s − 2)n!�(2m1 − n − 1)

�(n + s + 1)�(2m1 − s − n − 1)

]1/2

× (1 − q e−2x)(s+1)/2 e−(2x−ln
√

q)(m1−s/2−n−1)P (2m1−2n−s−2,s)
n (1 − 2q e−2x) (23)

and the energy spectrum has the form

En = −h̄2(s + 2n + 1)2

8m
− 2mα2

h̄2(s + 2n + 1)2
. (24)

The P
(α,β)
n are Jacobi polynomials. The number of bound states is determined by Nmax, which

depends on α and s. Decreasing s for fixed α is achieved by 0 < q < 1. Note that the
coordinate origin is excluded by x > ln

√
q.

2.4. The potential V4

The fourth kind of potential (Rosen–Morse potential) is defined by (x ∈ R)

V4(x) = β tanhq x − h̄2

2m

λ2 − 1/4

cosh2
q x

= β
ex − q e−x

ex + q e−x
− h̄2

2m

λ2 − 1/4

(e− ln
√

q+x + eln
√

q−x)2
. (25)

Performing the same transformation as before we get

V4(y) = β tanh y +
h̄2

2mq

λ2 − 1/4

cosh2 y
(26)

and again only the ‘radial’ potential strength is modified. For the Rosen–Morse potential in
q-deformed hyperbolic functions we obtain (x ∈ R) for the Green function

G(V4)(x ′′, x ′;E) = m

h̄2

�(m1 − LB)�(LB + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

×
(

1 − tanhq x ′

2

1 − tanhq x ′′

2

) m1−m2
2
(

1 + tanhq x ′

2

1 + tanhq x ′′

2

) m1+m2
2

× 2F1

(
−LB + m1, LB + m1 + 1;m1 + m2 + 1; 1 + tanhq x>

2

)

× 2F1

(
−LB + m1, LB + m1 + 1;m1 − m2 + 1; 1 − tanhq x<

2

)
, (27)
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where LB = − 1
2 + 2λ̃ and m1,2 = √

m/2(
√−β − E ± √

β − E)/h̄. The relevant coordinate
and time transformations to obtain a path integral formulation in terms of the modified Pöschl–
Teller Potential have the form [11, 25] (r > 0)

1
2 (1 + tanh y) = tanh2 r, dt = coth2 r ds. (28)

The wavefunctions and the energy spectrum are given by
(
s ≡ 2λ̃; 0, . . . , n � Nmax <[

1
2 (s − 1) − √

m|β|/2/h̄
]
,m1 = 1

2 (1 + s),m2 = 1
2

(
1 + 1

2 (s − 2n − 1) − 2mA
h̄(s−2n−1)

)
> 1

2

)
�n =

[(
1 − 4m|β|

h̄(s − 2n − 1)2

)
(s − 2m2 − 2n)n!�(s − n)

�(s + 1 − n − 2m2)�(2m2 + n)

]1/2

2n+(1−s)/2

× (1 − tanhq x)
1
2 s−m2−n(1 + tanhq x)m2− 1

2 P (s−2m2−2n,2m2−1)
n (tanhq x), (29)

En = −
[
h̄2(s − 2n − 1)2

8m
+

2mβ2

h̄2(s − 2n − 1)2

]
. (30)

The number of bound-states is determined by Nmax, which depends on α and s. Increasing s
for fixed β is achieved by q > 1.

2.5. The potential V5

Consequently, the q-deformed hyperbolic Scarf potential [13] is defined by (x > ln
√

q)

V5(x) = V0 + V1 coth2
q x + V2

cothq x

sinhq x
→ V0 + V1 coth y +

V2√
q

coth y

sinh y
. (31)

For the q-deformed hyperbolic Scarf potential we obtain for the Green function (x > ln
√

q)

G(V5)(x ′′, x ′;E) = 2m

h̄2

�(m1 − Lν)�(Lν + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

×
(

q−1/2 coshq

x ′

2
coshq

x ′′

2

)−(m1−m2)
(

tanhq

x ′

2
tanhq

x ′′

2

)m1+m2+1/2

× 2F1

(
−Lν + m1, Lν + m1 + 1;m1 − m2 + 1; q1/2 cosh−2

q

x<

2

)

× 2F1

(
−Lν + m1, Lν + m1 + 1;m1 + m2 + 1; tanh2

q

x>

2

)
(32)

with m1,2 = η/2 ±
√

V0 + V1 − 2mE/h̄2, where η = √
V1 + V2/

√
q + 1/4, ν =√

V1 − V2/
√

q + 1/4, and Lν = 1
2 (ν − 1). The bound-state wavefunctions and the energy

spectrum are given by

�n(x) =
[
(2m1 − 2m2 − 2n − 1)n!�(2m1 − n − 1)

2�(2m2 + n)�(2m1 − 2m2 − n)

]1/2 (
q−1/4 sinhq

x

2

)2m2−1/2

×
(

q−1/4 coshq

x

2

)2n−2m1+3/2

P [2m2−1,2(m1−m2−n)−1]
n

(
2q1/2

cosh2
q

x
2

− 1

)
, (33)

En = h̄2

2m
(V0 + V1) − h̄2

2m

[
(m1 − m2 − n) − 1

2

)]2

. (34)

Here we denote n = 0, 1, . . . , Nmax < m1 − m2 − 1/2, m1 = 1
2 (1 +

√
V1 − V2/

√
q + 1/4),

m2 = 1
2 (1 +

√
V1 + V2/

√
q + 1/4) and κ = m1 − m2 − n. In order that bound-states can exist,

it is required that V2 < 0. Note that the coordinate origin is excluded by x > ln
√

q.
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2.6. The potential V6

The q-deformed hyperbolic barrier Potential [31] is defined by (x ∈ R)

V6(x) = V0 + V1
tanhq x

coshq x
+ V2 tanh2

q x

→ V0 +
V1√
q

tanh y

cosh y
+ V2 tanh2 y. (35)

The q-deformed barrier potential is treated in a similar way. We obtain (x ∈ R, together
with the coordinate transformation (1 + i sinh x)/2 = cosh2 r in order to obtain a modified
Pöschl–Teller potential in the new coordinate r > 0 [13])

G(V6)(x ′′, x ′;E) = m

h̄2

�(m1 − Lν)�(Lν + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

× (q−1 coshq r ′ coshq r ′′)−(m1−m2)(tanhq r ′ tanhq r ′′)m1+m2+ 1
2

× 2F1
(−Lν + m1, Lν + m1 + 1;m1 − m2 + 1; q cosh−2

q x<

)
× 2F1

(−Lν + m1, Lν + m1 + 1;m1 + m2 + 1; tanh2
q x>

)
(36)

with ν = √
V2 + iV1/

√
q + 1/4, η = ν∗, Lν = 1

2 (ν − 1) and m1,2 = η/2 ±√
V0 + V2 − 2mE/h̄2. Furthermore, we have η/2 ≡ 1

2 (1 + λ), with the wavefunctions(
λR,I = (�,�)(λ), n = 0, 1, . . . , Nmax <

[
λR − 1

2

])
�n(x) =

[
(2λR − 2n − 1)n!�(λ − n)

2�(2λR − n)�(n + 1 − λ∗)

]1/2

×
(

1 + iq−1/2 sinhq x

2

) 1
2 ( 1

2 −λ) (
1 − iq−1/2 sinhq x

2

) 1
2 ( 1

2 −λ∗)

×P (−λ∗,−λ)
n (iq−1/2 sinhq x) (37)

with the energy spectrum

En = h̄2

2m
(V0 + V2) − h̄2

2m


n +

1

2
−

√√√√√1

2



√(

1

4
+ V2

)2

+
V 2

1

q
+

1

4
+ V2






2

. (38)

The energy spectrum is modified by the varying q in the V 2
1 -term.

2.7. The potential V7

There are four kinds of conditionally solvable potentials [15, 16] related to the Pöschl–Teller
potential type. We introduce (x ∈ R, r > ln

√
q, y = x − ln

√
q, z = r − ln

√
q) and the first

two of them are given by

V7(x) = h̄2

2m

(
− A e−x√

1 + q e−2x
+

B

1 + q e−2x
+

C

(1 + q e−2x)2

)

→ h̄2

2m

(
− (A/

√
q) e−y/2√

2 cosh y
+

B ey

2 cosh y
+

C e2y

4 cosh2 y

)
, (39)
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V ′
7(x) = h̄2

2m

(
− A√

1 + q e−2x
+

B

1 + q e−2x
+

C

(1 + q e−2x)2

)

→ h̄2

2m

(
− A ey/2√

2 cosh y

)
+

B ey

2 cosh y
+

C e2y

4 cosh2 y
. (40)

I have adopted the notation from [15, 16]. The potentials V7, V
′

7 may be called ‘deformed
modified Rosen–Morse potentials II and I’, respectively. These potentials are also called
‘conditionally solvable’ (cf [6, 15, 16, 30] and references therein) because exact solutions can
only be found if the parameter C takes the value C = 3/4. The solution of the path integral
for the potential V7 is related to the solution of the (deformed) hyperbolic Scarf potential [15].
From the Green function of the hyperbolic Scarf-like potential we derive the Green function
for the potential V7,

G(V7)(x ′′, x ′;E) = (
coth u′ coth u′′)1/2 2m

h̄2

�(m1 − Lν)�(Lν + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

× (cosh u′ cosh u′′)−(m1−m2)(tanh u′ tanh u′′)m1+m2+ 1
2

× 2F1

(
−Lν + m1, Lν + m1 + 1;m1 − m2 + 1; 1

cosh2 u<

)
× 2F1(−Lν + m1, Lν + m1 + 1;m1 + m2 + 1; tanh2 u>) (41)

with sinh u = ey = ex−ln
√

q , m1,2 = η/2 ±
√

V0 + V1 − 8mE/h̄2, η =√
V1 + V2 + 1/4, Lν = 1

2 (ν − 1) and ν = √
V1 − V2 + 1/4, together with the identification

V0 = 2mA/h̄2 − 1
2 , V1 = −(2mE/h̄2 + 1

4

)
, V2 = −2mB̃/h̄2. The poles of the Green

function determine the energy spectrum, and the corresponding residual give the wavefunctions
expansions. The quantization condition is found to read (B̃ = B/

√
q)√

A − En − 3h̄2

8m
= 1

2

(√
B̃ − En −

√
−B̃ − En

)
− h̄√

2m

(
n +

1

2

)
. (42)

This give after some algebra a cubic equation in (−En)
(
λ = A + C + ñ2, C = −3h̄2/8m,

ñ = h̄
(
n + 1

2

)/√
2m
)

4ñ2(−En)
3 + [12ñ2(ñ2 + λ) − λ2](−En)

2

+

[
16ñ2λ(A + C + λ) − 2(λ + 4ñ2)

(
λ2 +

B̃2

4
+ 4ñ2(A + C)

)]
(−En)

+

[
16ñ2λ2(A + C) −

(
λ2 +

B2

4
+ 4ñ2(A + C)

)2
]

= 0. (43)

We obtain for the energy levels

En = 3

√√
D +

Q

2
− 3

√√
D − Q

2
+

R

3
, (44)

D =
(

P

3

)3

+

(
Q

2

)2

, P = 3S − R2

3
, Q = 2R3

27
− RS

3
+ T ,

R = 12ñ2(ñ2 + λ) − λ2

4ñ2
, T = 16ñ2λ2(A + C) − [λ2 + B̃2/4 + 4ñ2(A + C)]2

4ñ2
,

S = 8ñ2λ(A + C + λ) − (λ2 + 4ñ2)(λ2 + B̃2/4 + 4ñ2(A + C)]

2ñ2
.




(45)
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We omit the details concerning the wavefunctions. bound states exist if A < 0, 0 < B̃ < |A|,
and the number Nmax of bound states is found by requiring |En| > B̃.

2.8. The potential V8

The second set of ‘conditionally solvable’ potentials is given by

V8(r) = h̄2

2m

(
f + 1 − f − 3/4

1 − q e−2r
+

h1 e−r√
1 − q e−2r

+
C

(1 − q e−2r )2

)

→ h̄2

2m

(
f + 1 − (f − 3/4) ez

2 sinh z
+

(h/
√

q) e−z/2

√
2 sinh z

+
C e2z

4 sinh2 z

)
, (46)

V ′
8(r) = h̄2

2m

(
f + 1 − f − 3/4

1 − q e−2r
+

h1√
1 − q e−2r

+
C

(1 − q e−2r )2

)

→ h̄2

2m

(
f + 1 − (f − 3/4) ez

2 sinh z
+

h1 ez/2

√
2 sinh z

+
C e2z

4 sinh2 z

)
. (47)

The potentials V8, V
′

8 may be called deformed Manning–Rosen potentials II and I, respectively.
The effect of the q-deformation in V ′

7 and V ′
8 consists just of a scaling in the coordinates, and

thus no new information is obtained. The path integral for the potential V8 is related to the path
integral for the hyperbolic barrier potential as discussed in [16]. The details of its solution are
not repeated here again, cf [16]. Due to the fact that its solution is defined in the half-space
R

+, we must construct the corresponding Green function in terms of the Green function in the
entire R, a method described in [14]. This has also been discussed in detail in [16], which is
not repeated here. Hence we obtain

(
ζ(z) = 1

2 (1 + tanh z), z = r − ln
√

q > 0
)

G(V8)(E)(x ′′, x ′;E) = G(ζ ′′, ζ ′;E) − G(ζ ′′, ζ(0);E)G(ζ(0), ζ ′;E)

G(ζ(0), ζ(0);E)
, (48)

with the Green function G(E) given by

G(ζ ′′, ζ ′;E) = m/h̄2√
ζ(z′)ζ(z′′)

�(m1 − Lν)�(Lν + m1 + 1)

�(m1 + m2 + 1)�(m1 − m2 + 1)

×
(

1 − √
ζ(z′)

2
· 1 − √

ζ(z′′)
2

)(m1−m2)/2

×
(

1 +
√

ζ(z′)
2

· 1 +
√

ζ(z′′)
2

)(m1+m2+1/2)/2

× 2F1

(
−Lν + M1, Lν + m1 + 1;m1 + m2 + 1; 1 +

√
ζ>(z)

2

)

× 2F1

(
−Lν + M1, Lν + m1 + 1;m1 − m2 + 1; 1 − √

ζ<(z)

2

)
. (49)

Here I have used the abbreviations

Lν = 1

2

(√
f + 1 + i

h1

q
− 2m

h̄2 E − 1

)
,

m1,2 = −1

2

√
f + 1 − i

h1

q
− 2m

h̄2 E ±
√

1

4
− f .

(50)
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Table 1. Solutions of the path integration of q-deformed potentials.

Potential Effect of q-deformation Related problem on hyperboloid

V1 Scaling Higgs oscillator
V2 Deformation of angular momentum number Higgs oscillator
V3 Deformation of angular momentum number Coulomb potential
V4 Deformation of angular momentum number Coulomb potential
V5 Scaling Superintegrable potential
V6 Scaling Superintegrable potential
V7 Complicated involvment of the parameters Potential on hyperboloid
V8 Complicated involvment of the parameters Potential on hyperboloid

Note that the minus sign in the first term in m1,2 is due to the reality condition of the problem
[16]. bound-states with energy En are determined by the equation

2F1
(−Lν(En) + m1(En), Lν(En) + m1(En) + 1;m1(En) + m2(En) + 1; 1

2

) = 0. (51)

A more detailed numerical investigation of this transcendental equation involving the
hypergeometric function is not performed here.

3. Summary and discussion

The results of our investigation of the introduction of the q-deformed hyperbolic potentials
show a combination of a shift of the coordinate origin of the potential combined with a
scaling of the potential strength. In the cases of the potential V1 to V6, with the introduction
of the parameter q, the energy levels and the wavefunctions were modified by a nonlinear,
albeit simple way. In particular, the energy levels could be easily derived from previous
calculations. The cases of the potential V7 and V8 were somewhat more difficult, which
was due to the fact that the energy levels are determined by a third-order equation and a
transcendental equation, respectively. q also entered the expressions nonlinearly. Taking into
account the potential V ′

7 and V ′
8 we will obtain energy spectra determined by a fourth-order

equation and a transcendental equation, modified by a simple shift due to the coordinate
translation.

Therefore these potentials can serve as modelling potentials where a finite potential trough
is required for particle interaction in molecular, atomic or nuclear physics. This feature is
especially seen if the potential is defined in the half-space x > ln

√
q. Depending on whether

0 < q < 1 or q > 1 the number of energy levels and the ground state energy can be increased or
decreased, respectively. We see the convenience of the path integral formalism in the solutions
of the deformed potential problems. We can easily use previous results, adapted accordingly
to the present problems. In the ‘radial’ problems the introduction of the parameter q forces
the quantum motion to take place in the half-space x > ln

√
q and not in the half-space x > 0.

We therefore have introduced an impenetrable finite wall between the particle motion and the
coordinate origin, which may be identified for instance with the centre-of-mass location of a
molecule. This feature alters the energy spectrum in a nonlinear way; in particular, in the q = 1
case there is an integer quantum number λ ≡ l ∈ N. However, this is a phenomenological
feature and does not constitute new physics. We summarize the effects on the potentials in
table 1. I have also included in the list the relation of the q-deformed potentials to a known
potential on the hyperboloid. The Higgs oscillator [20] is the curvature analogue of the usual
harmonic oscillator in flat space and the Coulomb potential is the curvature analogue of the
usual Coulomb potential in flat space.
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One should also keep in mind that the q-deformed hyperbolic potentials can be used to
describe curvature in spaces of negative constant curvature, i.e., on hyperboloids (compare
also [4] for the interrelation of a deformed algebra and the constant negative curvature in the
model of the hyperbolic plane [12]). Let us consider, for instance, the simplest hyperboloid

u2
0 − u2

1 − u2
2 = R2, u0 � 0, (52)

which describes one sheet of the double-sheeted hyperboloid �(2). According to [18]
on �(2) there are nine coordinate systems which allow separation of variables in the
Helmholtz, respectively, Schrödinger equation. We consider the usual spherical system
(τ ∈ R, ϕ ∈ [0, 2π)):

u0 = R cosh τ,

u1 = R sinh τ cos ϕ,

u2 = R sinh τ sin ϕ,


 −→




u0 = coshq τ,

u1 = sinhq τ cos ϕ,

u2 = sinhq τ sin ϕ,

(53)

and we observe that with the identification q = R2 the q-deformed spherical coordinate
system is a possible separating coordinate system for �(2). Furthermore, we obtain
−(u̇2

0 − u̇2
1 − u̇2

2

) = qτ̇ 2 + sinh2
q τ ϕ̇2. A calculation shows that the introduction of q does

not change the energy spectrum features for the free quantum motion on �(2) (just rescale
m → m/q). We can consider the Higgs oscillator V (	u) = (mR2ω2/2)

(
u1 + u2

2

)/
u2

0 (V1 and
V2 are analogues of the usual harmonic oscillator in a curved space) and the Coulomb potential
V (	u) = −(α/R)(u0

/√
u2

1 + u2
2 [18] (V3 and V4, where V3 is the case for the hyperboloid,

and V4 in imaginary Lobachevsky space [19]), and we find that the identification R2 = q for
the coordinate systems (53) of all spectral properties of the two potentials remains valid. V5

and V6 are other superintegrable potentials on the hyperboloid [3, 17, 18, 23]. The potentials
V7 and V8 do not fall into this special class. Therefore, we observe that the parameter λ

corresponds to the angular momentum number l. The effect of the q-deformation shifts the
dependence of l ∈ Z to some number λ ∈ R. In the other cases the parameters Vi are changed
accordingly. However, the effect of taking into account explicitly the curvature R according
to (53) has almost the same effect. Therefore we can interpret the deformation parameter q in
the hyperbolic potentials as a curvature term.
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[32] Pöschl G and Teller E 1933 Bemerkungen zur Quantenmechanik des anharmonischen Oszillators (in German)

Zeitschr. Phys. 83 143–51
[33] Scarf F L 1958 New soluble energy band problem Phys. Rev. 112 1137–40
[34] Schulman L S 1981 Techniques and Applications of Path Integration (New York: Wiley)
[35] Rosen N and Morse P M 1932 On the vibrations of polyatomic molecules Phys. Rev. 42 210–7


